Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 155, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749707

RESUMO

Inflammasomes, primarily responsible for the activation of IL-1ß, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1ß to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1ß in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1ß prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1ß expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1ß. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1ß release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.


Assuntos
Neoplasias Encefálicas , Indenos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Inflamassomos , Astrócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfonamidas/farmacologia , Microambiente Tumoral
2.
Eur J Cell Biol ; 102(2): 151317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099936

RESUMO

Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.


Assuntos
Riluzol , Simportadores , Animais , Riluzol/farmacologia , Riluzol/metabolismo , Cálcio/metabolismo , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/metabolismo , Medula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo
3.
J Neuroinflammation ; 19(1): 68, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305649

RESUMO

BACKGROUND: Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1ß. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. METHODS: After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. RESULTS: In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1ß. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. CONCLUSIONS: Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.


Assuntos
Inflamassomos , Traumatismos dos Nervos Periféricos , Humanos , Inflamassomos/metabolismo , Neurônios Motores/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Nervo Isquiático/lesões
4.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576165

RESUMO

Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Modelos Animais de Doenças , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética
5.
Front Pharmacol ; 11: 584184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328988

RESUMO

Neuronal injuries are accompanied by release and accumulation of damage-associated molecules, which in turn may contribute to activation of the immune system. Since a wide range of danger signals (including endogenous ones) are detected by the nucleotide-binding oligomerization domain-, LRR- and pyrin domain-containing protein 3 (NLRP3) pattern recognition receptor, we hypothesized that NLRP3 may become activated in response to motor neuron injury. Here we show that peripheral injury of the oculomotor and the hypoglossal nerves results in upregulation of NLRP3 in corresponding motor nuclei in the brainstem of mice. Although basal expression of NLRP3 was observed in microglia, astroglia and neurons as well, its upregulation and co-localization with apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, suggesting inflammasome activation, was only detected in neurons. Consequently, increased production of active pro-inflammatory cytokines interleukin-1ß and interleukin-18 were detected after hypoglossal nerve axotomy. Injury-sensitive hypoglossal neurons responded with a more pronounced NLRP3 upregulation than injury-resistant motor neurons of the oculomotor nucleus. We further demonstrated that the mitochondrial protector diazoxide was able to reduce NLRP3 upregulation in a post-operative treatment paradigm. Our results indicate that NLRP3 is activated in motoneurons following acute nerve injury. Blockade of NLRP3 activation might contribute to the previously observed anti-inflammatory and neuroprotective effects of diazoxide.

6.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756522

RESUMO

Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Vesículas Sinápticas/genética , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Neurônios Motores/patologia , Mutação/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Vesículas Sinápticas/patologia
7.
Cells ; 9(7)2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635451

RESUMO

Aging is characterized by a chronic low-grade sterile inflammation dubbed as inflammaging, which in part originates from accumulating cellular debris. These, acting as danger signals with many intrinsic factors such as cytokines, are sensed by a network of pattern recognition receptors and other cognate receptors, leading to the activation of inflammasomes. Due to the inflammasome activity-dependent increase in the levels of pro-inflammatory interleukins (IL-1ß, IL-18), inflammation is initiated, resulting in tissue injury in various organs, the brain and the spinal cord included. Similarly, in age-related diseases of the central nervous system (CNS), inflammasome activation is a prominent moment, in which cells of the neurovascular unit occupy a significant position. In this review, we discuss the inflammatory changes in normal aging and summarize the current knowledge on the role of inflammasomes and contributing mechanisms in common CNS diseases, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke, all of which occur more frequently with aging.


Assuntos
Envelhecimento/metabolismo , Inflamassomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Acidente Vascular Cerebral/metabolismo , Envelhecimento/patologia , Animais , Humanos , Doenças Neurodegenerativas/patologia , Transdução de Sinais , Acidente Vascular Cerebral/patologia
8.
Brain Res ; 1741: 146875, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389588

RESUMO

Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Diazóxido/administração & dosagem , Gliose/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/ultraestrutura , Esquema de Medicação , Núcleo do Nervo Facial/efeitos dos fármacos , Núcleo do Nervo Facial/metabolismo , Núcleo do Nervo Facial/ultraestrutura , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Microglia/ultraestrutura , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Complexo Nuclear Oculomotor/efeitos dos fármacos , Complexo Nuclear Oculomotor/metabolismo , Complexo Nuclear Oculomotor/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
9.
Int J Mol Sci ; 20(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130623

RESUMO

In an earlier study, signs of commencing degeneration of spinal motor neurons were induced in mice with short-term intraperitoneal injections of immunoglobulin G (IgG) taken from patients with amyotrophic lateral sclerosis (ALS). Since in that study, neither weakness nor loss of motor neurons was noted, to test whether the ALS IgG in this paradigm has the potential to evoke relentless degeneration of motor neurons, treatment with repeated injections over a longer period was carried out. Mice were systematically injected intraperitoneally with serum taken from ALS patients over a 75-day period. At selected time points, the isometric force of the limbs, number of spinal motor neurons and their intracellular calcium levels were determined. Furthermore, markers of glial activation and the motoneuronal uptake of human IgG were monitored. During this period, gliosis and progressive motoneuronal degeneration developed, which led to gradual loss of spinal motor neurons, more than 40% at day 21, along with decreasing muscle strength in the limbs. The inclusion-like accumulation of IgG appeared in the perikarya with the increase of intracellular calcium in the cell bodies and motor nerve terminals. Our results demonstrate that ALS serum can transfer motor neuron disease to mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/patologia , Soro/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo
10.
Biochem Biophys Res Commun ; 483(4): 1031-1039, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27545602

RESUMO

Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Neurônios Motores/metabolismo , Estresse Oxidativo , Receptores de AMPA/metabolismo
11.
Ideggyogy Sz ; 70(7-8): 247-257, 2017 Jul 30.
Artigo em Húngaro | MEDLINE | ID: mdl-29870639

RESUMO

Amyotrophic lateral sclerosis (ALS), the most frequent motor neuron disease is characterized by progressive muscle weakness caused by the degeneration of the motor neurons in the spinal cord and motor cortex. However, according to the recent observations, ALS is a rather complex syndrome which frequently involves symptoms of cognitive impairment. Therefore, ALS cases can be interpreted in a clinico-pathological spectrum spanning from the classical ALS involving only the motor system to the fronto-temporal dementia. The progression of the disease, however, manifested in the degeneration of the upper and lower motor neurons, is based on the same complex pathobiology. The main elements of the pathomechanism, such as oxidative stress, excitotoxicity, immune/inflammatory processes and mitochondrial dysfunction are well described already, which operate in orchestrated way and amplify the deleterious effect of each other. It is assumed that calcium ions act as a catalyst in this interaction, hence each of the individual mechanisms has strong, positive and reciprocal calcium dependence thus may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This review provides an overview of the role of calcium in connecting and amplifying the major mechanisms which lead to degeneration of the motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Humanos , Íons/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...